| # |
Лекция |
Дата |
| 0 |
Въведение в Machine Learning |
2017-10-10 |
| 1 |
Линейна и логистична регресия |
2017-10-12 |
| 2 |
Въведение в Python |
2017-10-17 |
| 3 |
Разглеждане на дата сет, трениране на модел и оптимизиране |
2017-10-19 |
| 4 |
Decision trees и random forests |
2017-10-24 |
| 5 |
Титаник: класификация, data exploration, feature engineering |
2017-10-26 |
| 6 |
Оценяване на модел и cross validation |
2017-10-31 |
| 7 |
Spooky Author Identification |
2017-11-02 |
| 8 |
SVM, Transformers, Pipelines |
2017-11-07 |
| 9 |
Unsupervised Learning |
2017-11-14 |
| 10 |
Unsupervised Learning, pt. 2 |
2017-11-16 |
| 11 |
NumPy, SciPy, Pandas, Matplotlib, Seaborn |
2017-11-21 |
| 12 |
Математиката зад линейната и логистичната регресия |
2017-11-23 |
| 13 |
Невронни мрежи и backpropagation |
2017-11-28 |
| 14 |
Tensorflow and Keras |
2017-12-07 |
| 15 |
Автоенкодери |
2017-12-12 |
| 16 |
WordEmbeddings |
2017-12-12 |
| 17 |
MachineTranslation |
2017-12-19 |
| 18 |
Convolutional Neural Networks |
2018-01-04 |
| 19 |
Convolutional Neural Networks part 2 |
2018-01-09 |
| 20 |
Recurrent Neural Networks |
2018-01-11 |